
Infini-T:
The Infinite Thread Machine

Krste Asanovic

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

12th SIAM Conference on Parallel Processing for Scientific Computing,
San Francisco, CA

24 February 2006

Supercomputing-Driven Architecture?

 Scientific computing can’t justify new architectures
 Market too small for full-custom chip design
 Compare $1bn/year capability market versus $0.4bn Cell processor

development budget
 Custom-chip design cost rising faster than supercomputing revenue

 Supercomputing systems must reuse mass-market
components
 Processors, DRAMs, FPGAs, network switches, …

 Recent application drivers: media, games, and
internet servers
 Impact on scientific computing: SSE2/3, higher memory and I/O

bandwidths, bigger and faster disks

Next Architecture Driver: Robotics?

Autonomous robots might lead to robust, adaptive,
massively parallel microprocessors for scientific
computing

Infini-T: A massive-scale,
self-adapting architecture for
cognitive processing

Infini-T Architecture Motivations

 Cognitive Application Challenges and Opportunities
 Scalability: Complex irregular processing over large data-sets with

aggressive real-time goals requiring massive performance
 Adaptivity: Processing needs vary dynamically and unpredictably

requiring automatic reallocation of resources
 Resiliency: Many soft-computing algorithms can tolerate reduced

precision, corrupt, or missing values

 Technology Challenges and Opportunities
 Density: Increased transistor count enables massive on-chip parallelism
 Power: Constraints on switching+leakage power and die temperature

require aggressive dynamic power management
 Faults: Increased soft and hard errors require dynamic checking and

automatic reconfiguration

Infini-T Key Ideas

 Fine-grain synchronization and context swapping
Stored-processor architecture
Unbounded hardware transactional memory
Producer-consumer synchronization

 Hardware isolation to support self-adaptation
Fine-grained Mondriaan memory protection
Non-blocking synchronization (transactions)
 Interconnect and memory bandwidth allocation
Power allocation

 No operating system (just a nanokernel)
Arbitrarily recursive user-level resource management

Stored-Processor Computer

Stored-Processor Computer

Conventional Multiprocessor

Memory

Processors

Registers

Memory

Active Set

 Software manages exactly N
processors

 All processors constantly running

 A processor cannot view or modify
another processor’s state

 Software creates as many
processors (hardware threads) as
needed

 Only active processors running

 Every processor’s state resides in
globally accessible memory

Infini-T Processor Programmer’s Model

Processor
Base (PB)

General
Purpose

Registers

Supervisor
State

Compact register-register instruction
encoding maps to memory-memory
operations:

ADD R1, R2, R3
=>
M[PB+R1] <- M[PB+R2]+M[PB+R3]

LOAD R1, offset(R2)
=>
M[PB+R1] <- M[M[PB+R2]+offset]

Instruction
Pointer

Processor state fits on one or
more cache lines (~256B)

64 bits

Infini-T Memory Ownership Bits

 Every 64-bit word in memory has an
associated ownership bit that indicates the
word has been claimed by another processor

 Word holds pointer to current owner

 Owner is responsible for recreating value
stored at location

 Used to provide various forms of fine-grained
synchronization

Rendezvous Synchronization

 Producer Processor
..
STORE_RNDZV X, 42
..

 Consumer Processor
..
LOAD_RNDZV X
..

Owner

 Producer arrives first P C
 Takes ownership, stores value,

and suspends

 Reads value and wakes sleeping
producer

 Consumer arrives second

 Producer relinquishes ownership

X: 42 42

 If consumer arrives first, it takes ownership and suspends.

 When producer arrives it stores value and wakes consumer.

Synchronizing Streams

 Producer Processor
Loop:
STORE buf1.data[0] # Fields in
STORE buf1.data[1] # first record.
…
STORE_RNDZV buf1.flag # Done.
..
STORE buf2.data[0] # Fields in
STORE buf2.data[1] # second record.
…
STORE_RNDZV buf2.flag # Done.
..
BRANCH Loop

P C
buf1

buf2

 Consumer Processor
Loop:
LOAD_RNDZV buf1.flag # Ready.
..
LOAD buf1.data[0] # Fields in
LOAD buf1.data[1] # first record.
…
LOAD_RNDZV buf2.flag # Ready.
..
LOAD buf2.data[0] # Fields in
LOAD buf2.data[1] # second record.
…
BRANCH Loop

Rendezvous

Rendezvous

 Example is a double-buffered
synchronizing stream.

 Can add additional buffers and
threads to provide more decoupling
and higher throughput.

flag

Infini-T Transactions

 Infini-T provides “unbounded
transactions” [HPCA’05]
 No limit on transaction size or duration

 Instruction XBEGIN/XEND delimit
transaction
 XBEGIN arguments are pointer to log

structure and error handler
 Transaction undone and error handler

called if log structure too small

 Each processor tagged with
transaction age
 Set to global clock when processor

created
 Increments on every successful XEND
 Oldest processor wins on transactional

conflict to avoid deadlock and
starvation

 Processor state is either:
 PENDING (running transaction)
 ABORTED (failed, cleaning up)
 COMMITTED (successful, cleaning

up)

Xaction State
Xaction Log
Xaction Age

Xaction Queue

Address
Old Value
Address

Old Value

Saved
processor

state

Log of
locations
touched

Xaction log holds
undo information

Processors waiting for
xaction to complete

Mondriaan Memory Protection

Execute-Read

Read-Only

Read-Write

No Permissions

0x00…

0xFF…

Process
Address
Space

Protection Domains
Kernel Module 1 Module 2 Module 3

Fine-grained word-level memory protection between software modules.

Enforces module boundaries to give isolation.

Processor state includes current protection domain identifier (PD-ID).

Processors can only jump between protection domains at specially marked
call and return gates in memory space.

[papers in ASPLOS’02, SOSP’05]

Mondriaan Implementation

 Efficient, compressed permissions trie structure held in main
memory

 Special compressed permissions cache in CPU avoids most
permissions lookups in memory structure (<10% overhead)

 Same general structure can be used to associate other metadata
with an address or range of addresses

Permissions
Cache

Processor
PD-ID

Load/Store Address

Access OK? Perm. Table
Root Ptr.

Miss?

CPU Memory

Permissions
Trie

Refill

Infini-T Tile

ALUs

Data Cache

Banked
512-entry
Unified

Scalar/Vector
Register File

Inst. Cache

Translation Cache

Ownership Cache
Xaction Cache

Permission Cache

Active Set Cache

Network
Hub

PE with L1 Caches

L2 Cache Slice

N
S
E
W
U
D

Inter-tile
links

ILP/TLP/DLP execution shares
common resources

 Scalar and vector registers
allocated out of common register
file

 Functional units shared between
scalar and vector
Multithreaded scalar execution at

up to 4x64b instructions per cycle
Vector execution at up to

 4x64b FLOPS/cycle
 8x32b FLOPS/cycle
 16x16b OPS/cycle
 32x8b OPS/cycle

 High-bandwidth path between
register file and primary data
cache used for fast thread context
save/restore and vector load/store

R
eg

io
n

of
 I

nt
er

es
t E

E

E

E

E
EE

E

P

P

P P
P

C
om

m
an

d
/

C
on

tr
ol

FU
SI

O
N

Si
tu

at
io

na
l A

w
ar

en
es

s

E
E

E

EE

EP

P

P P
P

Infini-T Architecture Overview

Global Interconnect
Adaptive L2$

Global DRAM

PE
L1$

PE
L1$

PE
L1$

Adaptive L2$

Global DRAM

PE
L1$

PE
L1$

PE
L1$

Infini-T Hardware
 Massive parallelism

100s cores/chip, 100s chips/system,
millions of hardware threads

 Isolation and introspection mechanisms
Stored-processors, transactions,

memory protection, QoS interconnect

Self-Managing Cellular Software
 Knowledge-based compilation and code

instrumentation
 Adaptive run-time management

Processors, cache policies, locality,
interconnect bandwidth, reliability,
power, temperature, error recovery

Cognitive Application Layer
 Goal-based program specification with

meta-data (requirements, constraints,
hints, etc.)

 Cognitive soft and hard algorithms
KB-inference, probabilistic, evolutionary,

Control Introspective
Feedback

Control Introspective
Feedback

Cellular Run-Time Environment

 Application divides computation into
a hierarchical collection of cells

 Each cell is granted resources
including processing tiles, memory,
global bandwidth, and power.

Inputs from
other cells Portal for

externally
visible
state

Cell Boundary

Sub-cells

Cell Manager

Control and feedback
to outer cell manager

Cell manager (application-specific code):
 Spawns sub-cells and assigns them

resources to run subtasks
 Performs introspection, by monitoring

behavior of sub-cells
 Learns behavior of sub-cells (e.g.,

resources vs. performance)
 On sub-cell failure, cleanly kills sub-cells

and implements recovery strategy

Handling Cell Failure

Many reasons for sub-cell failure:
 Deadline failure: Insufficient resources (processors, memory,

bandwidth, power, etc.) to finish computation by time required
 Thermal emergency: Tile temperature limit exceeded
 Hardware faults: Permanent hard fault or transient soft error
 Bugs: Application code crashes on this input data

Cell manager must:
 Detect failure: is error large enough to require failure recovery?
 Kill sub-cells: stop further execution
 Recover resources: processors, memory, etc.
 Implement recovery: e.g., restart sub-cells
If recovery not possible, cell will report failure to next outer cell.

Cell manager should learn from errors
 e.g., by updating knowledge base on performance versus resources

Infini-T Cell Isolation

System provides strong isolation between cells
Limits scope of failure, and simplifies recovery process
 Improves determinism, making it simpler to learn behavior of system

for given inputs and given assigned resources

Types of isolation provided in Infini-T
Processing cycles: (tiles*time), limit computational resources used
Cache partitioning: limit cache usage
Global memory bandwidth: limit interconnect BW and DRAM BW
Mondriaan Memory Protection: limit memory accessible to cell
Non-blocking synchronization: avoids cell dying while holding lock
Transactions: avoids cell dying while leaving inconsistent state
Power metering: prevent run-away cell from consuming all power

Hardware Enforces Cell Isolation

Global Interconnect

Adaptive L2$

Global DRAM

PE

L1$

PE

L1$

PE

L1$

Adaptive L2$

Global DRAM

PE

L1$

PE

L1$

PE

L1$

Cell A
Cell B

Cell C

…but application cell manager (user-level software)
determines policy

Mondriaan Memory
Protection

QoS on Global
Interconnect
and DRAM

Tile Control
Permissions

Power Usage
Monitors

Cache
Partitioning

Transactional
Updates to

Shared
Memory

Infini-T Chip-Level
Implementation

PE L1$

L2$
Slice

Switch
Physical design organized as replicated tile to
reduce design effort and provide redundancy.
Each tile contains:

 PE core, with scalar and vector units

 L1 caches (~32KB/tile)
 Instruction and data caches
 Processor cache (holds active and sleeping)
 Translation and permissions caches
 Active set cache (holds local active threads)

 L2 cache slice (~256KB-1MB/tile)
 Slices cooperate across all tiles in domain to form

large shared NUCA L2
 Intelligent replication and migration reduces hit

latency to L2 resident data
 L2 level manages coherency across all tile caches in

same domain

 Network switch
 Connects to on-chip network connecting tiles and

DRAM & I/O controllers

Infini-T Packaging Options

 Conventional 2D packaging, one Infini-T
chip per domain

 Multiple DRAM channels to off-chip
DRAM

 Multiple cross-domain connections per
chip

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Cross-domain links

 3D chip stacking, multiple stacked
Infini-T chips per domain

 Allows much larger domains, and
much higher DRAM bandwidth in
each domain

 Multiple DRAM channels per layer

 Multiple cross-domain connections
per layer Cross-domain

links

Summary

Infini-T is exploring new massively-parallel system architectures
that support

 Fine-grained synchronization and context switching

 Hardware isolation and fine-grained protection

 User-level self-management

 Research sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) under the ACIP program and grant
number NBCH104009

Backup Slides

Infini-T Vector Support

 Vector registers held in memory
on contiguous cache lines
 Up to 32 vector registers, each 32

elements of 64 bits

 Software must configure vector
unit with base address and
required number of vector
registers before use

 Vector registers cached in vector
unit during operation, full chaining
supported

 Full support for unit-stride, strided,
scatter-gather
 Effectively become memory-memory

copies

 Support for narrower width vector
operands
 32x64b, 64x32b, 128x16b, 256x8b

V0
V1
V2
V3
V4
V5

Vector Base

VCONFIG R1, #6 ; Allocate space
VLD V1, R2 ; Regular encoding
VLD V2, R3
VADD V3, V1, V2
VST V3, R4

Infini-T Implementation

 Entire state of parallel program execution is visible as a memory-
resident data structure
 Supports introspection and debugging.

 Special-purpose caches avoid most memory traffic for common
operations
 Transaction logs only actually created in memory if transaction large

and/or contested.

 Mondriaan memory protection scheme restricts access to
system data structures
 Processor supervisor state, protection tables, ownership tables.

 Each Infini-T instruction requires a bounded small number of
memory locations to be updated atomically.
 Underlying coherence protocol supports small transactions.

Infini-T Transaction Execution

 XBEGIN copies initial processor state to log, sets processor Xaction
state to PENDING

 Loads claim ownership and record address

 Stores claim ownership, record address and old value, and update
memory

 If XEND reached without conflict, processor switches to COMMITED
state and begins revoking ownership on locations

 On conflict between two PENDING transactions, oldest processor wins.
 Losing processor placed on waiting queue of winning processor (No point wasting cycles

running losing processor until winner completes)
 Losing processor enters ABORTED state (while waiting on queue) and begins revoking

ownership and restoring old values.
 Winning processor continues running once contested location restored.

 If PENDING transaction encounters owner that is COMMITED or
ABORTED, then places self on owner’s queue to await clean up.
 Optimization is to force cleanup of contested location immediately.

 When processor finishes committing or aborting, it wakes up any
queued processors

Exploiting Soft Computing

 Technology scaling will lead to chips with many errors:
 Soft errors from particle strikes, worst-case coupling noise, power

supply glitches, borderline fabrication quality
 Hard errors from reliability failures over time, burn-in less effective in

finer technologies

….but Soft Computing can sometimes tolerate errors

 Three levels at which errors can be reported or exploited:
 Application code/cell level - managed by dynamic software system
 Thread/transaction level - managed by dynamic hardware system
 Instruction level - managed statically by compiler

 Can use reduced supply voltage, or increased clock rate, or
less error correction circuitry, and tolerate resulting errors

 Cell isolation vital to detect and recover from lethal errors in
cell (i.e. don’t have to guarantee all errors are benign)

Instruction-Level Error Resilience

 Approximate / probabilistic data can be corrupted without harm

 Not all instructions in soft computations are resilient to error
 Instructions along data/control flow to approximate data are potentially resilient
 Which ones are resilient?

Arithmetic Instructions
 All of these are resilient
 Safety: ignore exceptions and return a “reasonable” value

Memory Instructions
 Bad load or store data is o.k.
 Bad load address is o.k.; on exception, return a reasonable value
 Bad store address is not o.k. (but caught by Mondriaan)

Control Instructions
 Bad direction is o.k. in some cases: early loop exit, if-then-else
 Bad target address is not o.k. (but caught by Mondriaan)

3 Major
Instruction
Types

CEARCH Architecture Prototype

 InfiniT chip
 ≥ 128 cores per chip
 ≥ 1M light-weight threads per chip

 CEARCH system
 ≥ 64 chips per system
 Transactional memory
 Adaptive hardware and runtime

